Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1.
نویسندگان
چکیده
Overactivation of the mineralocorticoid receptor signaling is implicated in cardiovascular disease, including hypertensive heart disease. Oxidative stress is suggested to augment mineralocorticoid receptor signal transduction, but the precise mechanisms remain unclear. Mineralocorticoid receptor activity is regulated by multiple factors, in addition to plasma ligand levels. We previously identified Rac1 GTPase as a modulator of mineralocorticoid receptor activity. Here we show that oxidative stress induces mineralocorticoid receptor activation in a ligand-independent, Rac1-depenent manner in cardiomyocytes. Oxidant stress was induced in rat cultured cardiomyocytes (H9c2) by l-buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO depleted intracellular glutathione and concomitantly increased reactive oxygen species (199%; P<0.01). BSO significantly enhanced the corticosterone-induced, mineralocorticoid receptor-dependent luciferase reporter activity (186%; P<0.01) and basal luciferase activity without ligand stimulation. These effects were inhibited by the antioxidant N-acetylcysteine. The ligand independency of BSO action was indicated using a mutant mineralocorticoid receptor that does not bind ligands. With this mutant mineralocorticoid receptor, BSO-evoked mineralocorticoid receptor activation remained intact, whereas ligand-induced mineralocorticoid receptor activation was abolished. We next examined the involvement of Rac1. BSO increased active Rac1 in a redox-dependent fashion, and Rac inhibition suppressed the enhancing effect of BSO. Constitutively active Rac1, indeed, potentiated mineralocorticoid receptor transactivation. Furthermore, mineralocorticoid receptor transactivation by BSO was accompanied by enhanced nuclear accumulation of mineralocorticoid receptor. We conclude that alteration of redox state modulates mineralocorticoid receptor-dependent transcriptional activity via Rac1 in the heart. This redox-sensitive, ligand-independent mineralocorticoid receptor activation may contribute to the processes by which oxidant stress promotes cardiac injury.
منابع مشابه
Rac1-Mediated Activation of Mineralocorticoid Receptor in Pressure Overload-Induced Cardiac Injury.
There is increasing evidence for a crucial role of aberrant mineralocorticoid receptor (MR) activation in heart failure, with clinical studies showing beneficial effects of MR blockade. However, the mechanisms of MR activation in heart failure remain unclear. In this study, we observed that the small GTPase Rac1 contributes to myocardial MR activation, whereas Rac1-MR pathway activation leads t...
متن کاملRole of mineralocorticoid receptors in the mediation of acute effects of hydrocortisone in isolated ischemic rat heart
Introduction: Cardiac preconditioning is an important method to reduce the damage caused by prolonged ischemia. Previous studies have shown that corticosteroids have protective effects on the heart, however at high concentrations this effect may be reduced with unknown mechanisms. We hypothesize that the contradictory effects of hydrocortisone at high concentration may be mediated via minera...
متن کاملOxidative Stress and Mineralocorticoid Receptor Signaling in the Brain: Possible Therapeutic Targets for Dementia
Glucocorticoid and mineralocorticoid receptor signals are important for memory formation, salt cravings, sympathetic tone and hypothalamic–pituitary–adrenal (HPA) axis control in the brain. Exacerbations of glucocorticoid and mineralocorticoid receptor signaling cause atherosclerosis, cognitive dysfunction, and depression. Mineralocorticoid activity is modulated by oxidative stress, and chronic...
متن کاملConstitutive activation of rac1 results in mitochondrial oxidative stress and induces premature endothelial cell senescence.
OBJECTIVE Oxidative stress has been implicated in cellular senescence and vascular aging. We determined the role and mechanism of the small GTPase rac1 in vascular endothelial cell senescence. METHODS AND RESULTS Adenoviral-mediated expression of the constitutively active allele of rac1 (rac1V12) in human umbilical vein endothelial cells resulted in mitochondrial oxidative stress with inducti...
متن کاملStatins inhibit beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes via a Rac1-dependent mechanism.
BACKGROUND 3-hydroxy-3-methylglutaryl coenzyme A inhibitors (statins) inhibit myocyte hypertrophy in vitro and ameliorate the progression of cardiac remodeling in vivo, possibly because of inhibition of the small GTPase Rac1. The role of Rac1 in mediating myocyte apoptosis is not known. beta-Adrenergic receptor (betaAR)-stimulated myocyte apoptosis is mediated via activation of c-Jun NH2-termin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 59 2 شماره
صفحات -
تاریخ انتشار 2012